

OP-S10G31-02 10G SFP+LRM Module, MM 1310nm 220m LC DDM

Features

- Support data rate up to 10.5Gb/s
- Uncooled 1310nm FP laser transmitter and PIN photodetector
- Up to 220m transmission distance on MMF
- Built-in digital diagnostic functions
- Single 3.3V power supply
- Hot-pluggable SFP footprint
- Duplex LC connector interface
- Low power consumption
- Compliant with SFP+ MSA and IEE803.ae
- Compliant with RoHS

Applications

- 10GBASE-LRM at 10.3125Gbps
- 10GBASE-LW at 9.953Gbps
- Other Optical Links

Description

OPTINET SFP+LRM transceiver is designed for 10G Ethernet serial optical data communication up to 220m on MMF. The module transmitter section uses a 1310nm FP laser and is a Class 1 laser compliant according to International Safety standard IEC 60825. The receiver section consists of a PIN photodiode integrated with a TIA. It is compliant with Multi-Sourcing Agreement (MSA) SFF-8431 and SFF-847.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	85	°C
Supply Voltage	Vcc	-0.5	4	V
Operating Humidity	RH	5	95	0⁄0
Power Consumption			1	W

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	Тс	0		70	°C

Power Supply Voltage	Vcc	3.15	3.3	3.45	V
Power Supply Current	lcc			290	mA
Data Rate	-		10.3125		Gbps
Transmission Distance	TD	2		220	М

Optical Characteristics

Parameter	Symbol	Min.	Typical	Max.	Unit				
	Transmitter								
Centre Wavelength	λς	1260	1310	1355	nm				
Average Output Power	Po	-6.5		0.5	dBm				
Extinction Ratio	Er	3.5			dB				
Spectral Width(RMS)	Δλ			3	nm				
Optical Modulation Amplitude	OMA	-4.5			dBm				
Transmitter and Dispersion Penalty	TDP			3.2	dB				
Pout @TX-Disable Asserted	Poff			-30	dBm				
Output Optical Eye Mask	Compliant with IEEE 802.3-2008								
	R	eceiver							
Center Wavelength	λς	1260		1355	nm				
Receiver Sensitivity	S			-8.5	dBm				
Receiver Sensitivity in OMA	Soma			-6.5	dBm				
Receiver Overload	P _{in}	0.5			dBm				
LOS De-Assert	LOSD			-11	dBm				
LOS Assert	LOS _A	-30			dBm				
LOS Hysteresis		0.5			dB				

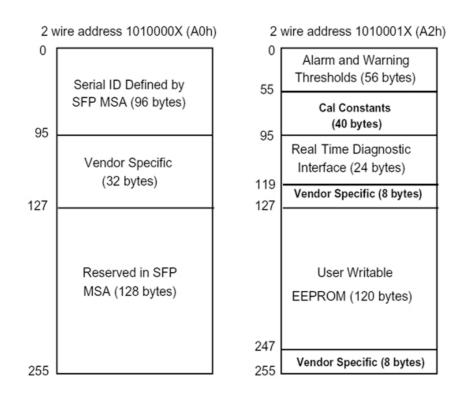
Notes:

1. The optical power is launched into MMF

2. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps 3. Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER $\leq 1x10^{-12}$

Electrical Characteristics

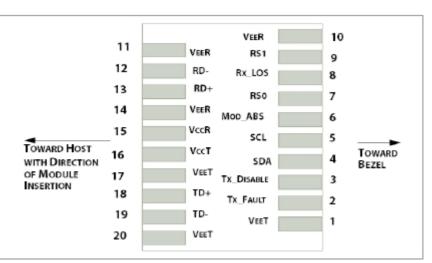
Parameter		Symbol	Min.	Тур.	Max.	Unit	
Transmitter							
Differential Data	Input Swing	Vin	180		700	mV	
Input Differential Impendence		Zin		100		Ω	
TX_Fault	Normal Operation		0		0.5	V	



	Transmitter Fault		2		Vcc	V	
TX_Disable	Laser Enable		0		0.8	V	
	Laser Disable		2		Vcc+0.3	V	
Receiver							
Differential Data Output Swing V			300		850	mV	
Output Differentia	Zo		100		mV		
Rx_LOS	Normal Operation		0		0.5	V	
	Loss of Signal		2		Vcc	V	

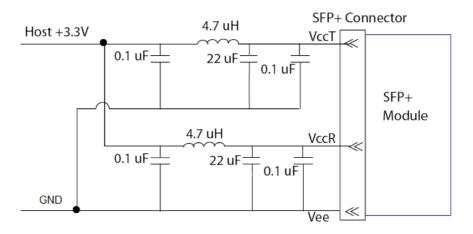
Digital Diagnostic Function

OPTINET SFP+LRM transceiver supports the 2-wire serial communication protocol as defined in SFP MSA. The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, manufacturer, part no and other information.

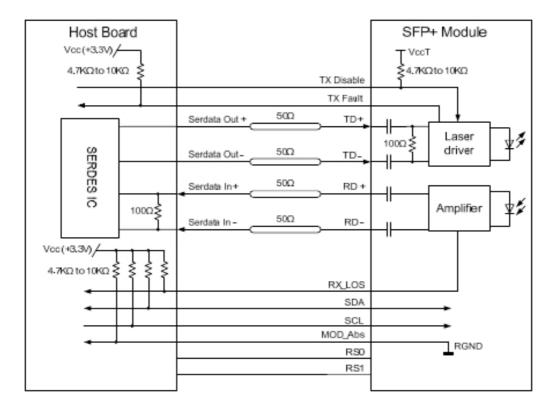

Additionally, the digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). It allows real-time access to transceiver's working temperature, laser bias current, transmitted optical power, receiver sensitivity and supply voltage.

Pin Definitions

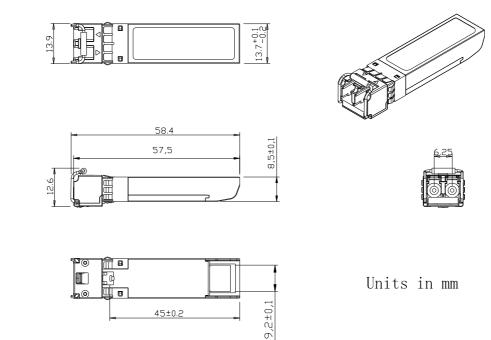
Diagram of Connector Block Pins on Host Board


Pin	Symbol	Name/Description
1	VeeT	Transmitter Ground
2	Tx_FAULT	Transmitter Fault
3	Tx_DISABLE	Transmitter Disable. Laser output disabled on high or open
4	SDA	2-wire Serial Interface Data Line
5	SCL	2-wire Serial Interface Clock Line
6	MOD_ABS	Module Absent, connected to VeeT or VeeR in the module
7	RS0	Rate Select 0, not implement
8	RX_LOS	Receiver loss of signal
9	RS1	Rate Select 1, not implement
10	VeeR	Receiver Ground
11	VeeR	Receiver Ground
12	RD-	Receiver Inverted Data Output
13	RD+	Receiver Non-Inverted Data Output
14	VeeR	Receiver Ground
15	VccR	Receiver Power Supply
16	VccT	Transmitter Power Supply
17	VeeT	Transmitter Ground
18	TD+	Transmitter Non-Inverted Data Input
19	TD-	Transmitter Inverted Data Input
20	VeeT	Transmitter Ground

Notes:


- 1. The Module ground pins are isolated from the module case
- 2. The pins should be pulled up with $4.7k-10k\Omega$ to a voltage between 3.15Vand 3.6V on host board
- 3. The pins is pulled to VccT with 4.7 k Ω to 10k Ω resistor in the module
- 4. The pins are pulled low to VccT with a > 30 k Ω resistors in the module

Recommended Host Board Power Supply Unit



Recommended Interface Circuit

Mechanical Diagram

Ordering Information

Part No	Data Rate	Wavelength	Fiber	Reach	Temp	DDM
OP-S10G31-02	10Gbps	1310nm	MMF	220M	0~70 ℃	YES
OP-S10G31-02E	10Gbps	1310nm	MMF	220M	-10~80°C	YES
OP-S10G31-02I	10Gbps	1310nm	MMF	220M	-40~85°C	YES

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge(ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.