

# OP-QSFP28-CWDM4 QSFP28 CWDM4 Optical Transceiver Module 2km LC DDM

#### **Features**

- Supports 103.1Gb/s, each lane bit rate 25.78 Gb/s
- Up to 2km transmission on single mode fiber (SMF) with FEC
- LAN WDM DFB laser and PIN receiver.
- I2C interface with integrated Digital Diagnostic monitoring
- QSFP28 MSA package with duplex LC connector
- Single +3.3V power supply
- 4 CWDM lanes MUX/DEMUX design
- 100G CWDM4 MSA Technical Spec Rev1.1
- Maximum power consumption 3.5 W
- Operating case temperature: 0 to +70 °C
- Complies with EU Directive 2011/65/EU (RoHS 6/6)



### **Application**

- Data Center Interconnect
- 100G Ethernet
- Infiniband QDR and DDR interconnects
- Enterprise networking

OP-QSFP28-CWDM4 QSFP28 transceiver module is designed for use in 100 Gigabit Ethernet links on up to 2km of single mode fiber. It is compliant with the 1000GBASE CWDM4 MSA standard. The module converts 4 inputs channels (ch) of 25Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 100Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 100Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.



Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112 Tel: +86-755-28471034 Fax:+86-755-61824579

www.optinetec.com sales@optinetec.com

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. Host FEC is required to support up to 2km fiber transmission.

This product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference

### **Absolute Maximum Ratings**

| Parameter                   | Symbol          | Min. | Typical | Max. | Unit | Notes |
|-----------------------------|-----------------|------|---------|------|------|-------|
| Storage Temperature         | Ts              | -40  | -       | +85  | °C   |       |
| Supply Voltage              | V <sub>cc</sub> | -0.5 | -       | +4.0 | V    |       |
| Operating Relative Humidity | RH              | -    | -       | +85  | %    |       |

### **Recommended Operating Conditions**

| Parameter                  | Symbol             | Min. | Typical | Max. | Unit | Notes    |
|----------------------------|--------------------|------|---------|------|------|----------|
| Operating Case Temperature | T <sub>C</sub>     | 0    | -       | +70  | °C   |          |
| Power Supply Voltage       | V <sub>CC</sub>    | 3.13 | 3.3     | 3.47 | V    |          |
| Power Supply Current       | I <sub>CC</sub>    | -    | -       | 1.15 | Α    |          |
| Maximum Power Dissipation  | $P_{D}$            | -    | -       | 4    | W    |          |
| Aggregate Bit Rate         | BR <sub>AVE</sub>  | -    | 103.125 | -    | Gb/s |          |
| Lane Bit Rate              | BR <sub>LANE</sub> | -    | 25.78   | ı    | Gb/s |          |
| Transmission Distance      | TD                 |      | -       | 2    | km   | Over SMF |

### **Optical Characteristics**

| Parameter                                                                           | Symbol               | Min    | Typical | Max    | Unit | Notes |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------|--------|---------|--------|------|-------|--|--|--|--|
| Transmitter                                                                         |                      |        |         |        |      |       |  |  |  |  |
| Center Wavelength Lane 0                                                            | $\lambda_0$          | 1264.5 | 1271    | 1277.5 | nm   |       |  |  |  |  |
| Center Wavelength Lane 1                                                            | λ <sub>1</sub>       | 1284.5 | 1291    | 1297.5 | nm   |       |  |  |  |  |
| Center Wavelength Lane 2                                                            | $\lambda_2$          | 1304.5 | 1311    | 1317.5 | nm   |       |  |  |  |  |
| Center Wavelength Lane 3                                                            | $\lambda_3$          | 1324.5 | 1331    | 1337.5 | nm   |       |  |  |  |  |
| Total Launch Power                                                                  | P <sub>ALL</sub>     | -      | -       | 8.5    | dBm  | 1     |  |  |  |  |
| Average Launch Power per Lane                                                       | P <sub>TX_LANE</sub> | -6.5   | -       | 2.5    | dBm  | 1     |  |  |  |  |
| Optical Modulation Amplitude (OMA), each Lane                                       | POMA                 | -4     |         | 2.5    | dBm  | 1     |  |  |  |  |
| Launch Power in OMA minus<br>Transmitter and Dispersion Penalty<br>(TDP), each Lane |                      | -5     |         |        | dBm  |       |  |  |  |  |





Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112
Tel: +86-755-28471034 Fax:+86-755-61824579
www.optinetec.com sales@optinetec.com

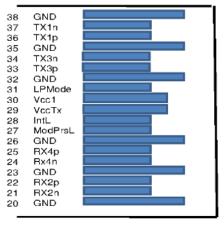
| TDP, each Lane                                                | TDP        |                                   | -                     | 3         | dBm       |                    |
|---------------------------------------------------------------|------------|-----------------------------------|-----------------------|-----------|-----------|--------------------|
| Extinction Ratio                                              | ER         | 3.5                               | -                     | -         | dB        |                    |
| Relative Intensity Noise                                      | RIN        |                                   | -                     | -130      | dB/H<br>z | 12dB<br>reflection |
| Optical Return Loss Tolerance                                 | TOL        |                                   | -                     | 20        | dB        | 2                  |
| Transmitter Reflectance                                       | RT         |                                   | -                     | 12        | dB        |                    |
| Average Launch Power OFF Transmitter, each Lane               | Poff       |                                   | -                     | -30       | dBm       | 2                  |
| Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}      |            | {0.31, 0                          | .4, 0.45, 0.3<br>0.4} | 34, 0.38, |           | 2                  |
|                                                               | Re         | ceiver                            |                       |           |           |                    |
| Damage Threshold, each Lane                                   | THd        | 3.5                               |                       |           | dBm       | 3                  |
| Total Average Receive Power                                   |            |                                   |                       | 8.5       | dBm       |                    |
| Average Receive Power, each Lane                              |            | -11.5                             |                       | 2.5       | dBm       |                    |
| Receive Power (OMA), each Lane                                |            |                                   |                       | 2.5       | dBm       |                    |
| Receiver Sensitivity (OMA), each Lane                         | SEN        |                                   |                       | -10       | dBm       | forBER=<br>5x10-5  |
| Stressed Receiver Sensitivity (OMA), each Lane                |            |                                   |                       | -7.3      | dBm       | 4                  |
| Receiver Reflectance                                          | RR         |                                   |                       | -26       | dB        |                    |
| LOS Assert                                                    | LOSA       | -30                               |                       |           | dBm       |                    |
| LOS Deassert                                                  | LOSD       |                                   |                       | -15       | dBm       |                    |
| LOS Hysteresis                                                | LOSH       | 0.5                               |                       |           | dB        |                    |
| Receiver Electrical 3 dB upper<br>Cutoff Frequency, each Lane |            |                                   |                       | 31        | GHz       |                    |
| Conditions of S                                               | Stress Rec | eiver Sens                        | itivity Test          | (Note 5)  |           |                    |
| Vertical Eye Closure Penalty, each Lane                       |            |                                   | 1.9                   |           | dB        |                    |
| Stressed Eye J2 Jitter, each Lane                             |            |                                   | 0.33                  |           | U         |                    |
| Stressed Eye J4 Jitter, each Lane                             |            |                                   | 0.48                  |           | UI        |                    |
| SRS eye mask definition { X1, X2, X3, Y1, Y2, Y3}             |            | {0.39, 0.5, 0.5, 0.39, 0.39, 0.4} |                       |           |           |                    |

#### Notes:

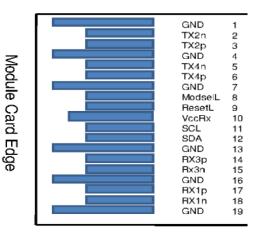
- Even if the TDP < 1.0 dB, the OMA min must exceed the minimum value specified here.
- 2. Hit ratio 5x10-5.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver



Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112 Tel: +86-755-28471034 Fax:+86-755-61824579 www.optinetec.com sales@optinetec.com


does not have to operate correctly at this input power.

- 4. Measured with conformance test signal for BER = 5x10-5.
- 5. Vertical eye closure penalty, stressed eye J2 jitter, stressed eye J4 jitter, and SRS eye mask definition are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver


#### **Electrical Characteristics**

| Parameter                          | Symbol               | Min.    | Typical | Max. | Unit | Notes |  |  |  |
|------------------------------------|----------------------|---------|---------|------|------|-------|--|--|--|
| Transmitter (Module Input)         |                      |         |         |      |      |       |  |  |  |
| Differential Data Input Amplitude  | $V_{IN,P-P}$         | 100     | -       | 1100 | mVpp |       |  |  |  |
| Input Impedance (Differential)     | Z <sub>IN</sub>      | 85      | 100     | 115  | Ohms |       |  |  |  |
| Differential Termination Mismatch  |                      | -       | -       | 10   | %    |       |  |  |  |
| Rec                                | eiver (Modu          | le Outp | ut)     |      |      |       |  |  |  |
| Differential Data Output Amplitude | $V_{\text{OUT,P-P}}$ | 200     | -       | 900  | mVpp |       |  |  |  |
| Output Impedance (Differential)    | Z <sub>OUT</sub>     | 85      | 100     | 115  | Ohms |       |  |  |  |
| Differential Termination Mismatch  |                      | -       | •       | 10   | %    |       |  |  |  |
| Output Rise/Fall Time, 20%~80%     | $T_R/T_F$            | 12      | -       | -    | ps   |       |  |  |  |

### **Pin Description**







Bottom Side Viewed From Bottom

| Pin | Name | Logic | Function                        | Plug Seq. | Notes |
|-----|------|-------|---------------------------------|-----------|-------|
| 1   | GND  |       | Ground                          | 1         | 1     |
| 2   | Tx2n | CML-I | Transmitter Inverted Data Input | 3         |       |
| 3   | Tx2p | CML-I | Transmitter Non-Inverted Data   | 3         |       |
| 4   | GND  |       | Ground                          | 1         | 1     |
| 5   | Tx4n | CML-I | Transmitter Inverted Data Input | 3         |       |
| 6   | Tx4p | CML-I | Transmitter Non-Inverted Data   | 3         |       |



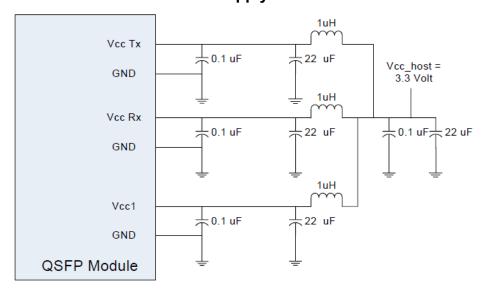
#### Optinet Technology Co., Ltd

Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112
Tel: +86-755-28471034 Fax:+86-755-61824579
www.optinetec.com sales@optinetec.com

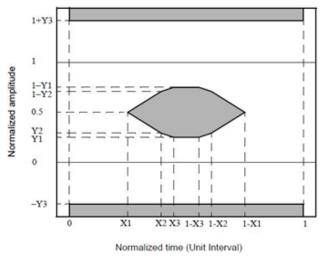
| 7  | GND     |            | Ground                            | 1 | 1 |
|----|---------|------------|-----------------------------------|---|---|
| 8  | ModSelL | LVTTL-I    | Module Select                     | 3 |   |
| 9  | ResetL  | LVTTL-I    | Module Reset                      | 3 |   |
| 10 | VccRx   |            | +3.3V Power Supply Receiver       | 2 | 2 |
| 11 | SCL     | LVCMOS-I/O | 2-wire serial interface clock     | 3 |   |
| 12 | SDA     | LVCMOS-I/O | 2-wire serial interface data      | 3 |   |
| 13 | GND     |            | Ground                            | 1 |   |
| 14 | Rx3p    | CML-O      | Receiver Non-Inverted Data Output | 3 |   |
| 15 | Rx3n    | CML-O      | Receiver Inverted Data Output     | 3 |   |
| 16 | GND     |            | Ground                            | 1 | 1 |
| 17 | Rx1p    | CML-O      | Receiver Non-Inverted Data Output | 3 |   |
| 18 | Rx1n    | CML-O      | Receiver Inverted Data Output     | 3 |   |
| 19 | GND     |            | Ground                            | 1 | 1 |
| 20 | GND     |            | Ground                            | 1 | 1 |
| 21 | Rx2n    | CML-O      | Receiver Inverted Data Output     | 3 |   |
| 22 | Rx2p    | CML-O      | Receiver Non-Inverted Data Output | 3 |   |
| 23 | GND     |            | Ground                            | 1 | 1 |
| 24 | Rx4n    | CML-O      | Receiver Inverted Data Output     | 3 |   |
| 25 | Rx4p    | CML-O      | Receiver Non-Inverted Data Output | 3 |   |
| 26 | GND     |            | Ground                            | 1 | 1 |
| 27 | ModPrsL | LVTTL-O    | Module Present                    | 3 |   |
| 28 | IntL    | LVTTL-O    | Interrupt                         | 3 |   |
| 29 | VccTx   |            | +3.3V Power supply transmitter    | 2 | 2 |
| 30 | Vcc1    |            | +3.3V Power supply                | 2 | 2 |
| 31 | LPMode  | LVTTL-I    | Low Power Mode                    | 3 |   |
| 32 | GND     |            | Ground                            | 1 | 1 |
| 33 | Тх3р    | CML-I      | Transmitter Non-Inverted Data     | 3 |   |
| 34 | Tx3n    | CML-I      | Transmitter Inverted Data Input   | 3 |   |
| 35 | GND     |            | Ground                            | 1 | 1 |
| 36 | Tx1p    | CML-I      | Transmitter Non-Inverted Data     | 3 |   |
| 37 | Tx1n    | CML-I      | Transmitter Inverted Data Input   | 3 |   |
| 38 | GND     |            | Ground                            | 1 | 1 |
|    |         |            |                                   |   |   |

### Notes:

1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal




Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112
Tel: +86-755-28471034 Fax:+86-755-61824579
www.optinetec.com sales@optinetec.com


common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

### **Recommended Host Board Power Supply Circuit**



### **Eye Mask Definition**



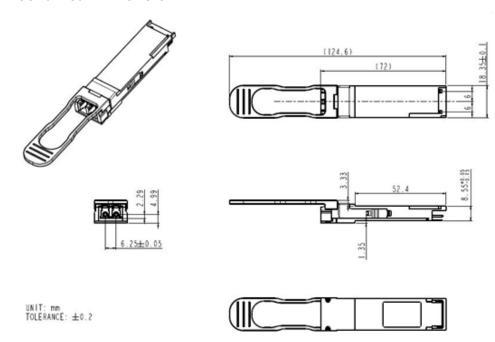
| X1¢ <sup>3</sup> | 0.31₽ | Y1€              | 0.34↩ |
|------------------|-------|------------------|-------|
| X24 <sup>3</sup> | 0.40₽ | Y24 <sup>2</sup> | 0.38← |
| X34 <sup>2</sup> | 0.45↔ | Y3 <i>₽</i>      | 0.443 |

### **Digital Diagnostics**

| Parameter                | Range                | Accuracy | Unit | Calibration |
|--------------------------|----------------------|----------|------|-------------|
| Temperature              | 0 to 70              | ±3       | ô    | Internal    |
| Voltage                  | 0 to V <sub>CC</sub> | 0.1      | V    | Internal    |
| Tx Bias Current Per Lane | 0 to 100             | 10%      | mA   | Internal    |
| Tx Output Power Per Lane | to 2.9               | ±3       | dBm  | Internal    |



Optinet Technology Co., Ltd


Add: 4th Floor Xiufeng Industrial Park, Buji Street, Longgang District, Shenzhen, China 518112

Tel: +86-755-28471034 Fax:+86-755-61824579

www.optinetec.com sales@optinetec.com

| Rx Power (Each Lane)   | -21 to 5 | +3 | dBm   | Internal |
|------------------------|----------|----|-------|----------|
| Tix Tower (Lacin Lane) | 21 100   | ∪  | abiii | intornar |

## **Mechanical Dimension**



## **Ordering Information**

| Part No.        | Data Rate | Laser    | Fiber<br>Type | Distance | Optical Interface | Temp  | DDMI |
|-----------------|-----------|----------|---------------|----------|-------------------|-------|------|
| OP-QSFP28-CWDM4 | 103.1Gbps | CWDM DFB | SMF           | 2km      | LC                | 0~70℃ | Υ    |